
Eur. Phys. J. B 48, 81–86 (2005)
DOI: 10.1140/epjb/e2005-00369-x THE EUROPEAN

PHYSICAL JOURNAL B

Propagation of fronts in activator-inhibitor systems with a cutoff
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Abstract. We consider a two-component system of reaction-diffusion equations with a small cutoff in the
reaction term. A semi-analytical solution of fronts and how the front velocities vary with the parameters
are given for the case when the system has a piecewise linear nonlinearity. We find the existence of a
nonequilibrium Ising-Bloch bifurcation for the front speed when the cutoff is present. Numerical results of
solutions to these equations are also presented and they allow us to consider the collision between fronts,
and the existence of different types of traveling waves emerging from random initial conditions.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 05.40.Fb Random walks and Levy
flights

The study of front propagation is one of the most funda-
mental problems in nonequilibrium physics [1]. The con-
cept of cutoff [2–4] has been introduced to model the ef-
fects of the discrete nature of the interaction in systems
with continuum variables around the unstable state. If one
thinks of the continuous system as an approximation to a
contact process among N individuals, the cutoff is 1/N .
As the number of particles is an integer, the concentra-
tion u(x, t) could be thought of as being larger than some
threshold ε = 1/N , which would correspond to the value
of u(x, t) when a single particle is present. Most stud-
ies [3–5] are concentrated on one-component systems. It
was shown that the effect of the cutoff ε is to select a sin-
gle velocity that converges when ε → 0 to that predicted
by the marginal stability argument [3,4]. This question is,
however, still open for two-species systems where the ef-
fect of the cutoff may be presumably very important in
the existence and the propagation of the fronts. The two-
component reactions yield a variety of pattern formations
in non-equilibrium systems [6]. In the context of the two-
component model with cutoff it was found that for a given
diffusion ratio D for both species, there is a critical value
εcrit of the cutoff threshold such that the front is unsta-
ble for all ε > εcrit [7]. The front is diffusively unstable,
as it supports large cellular structures with grooves where
growth is screened out [7]. This phenomenon was found
by simulations of the simple two-component model

∂u

∂t
= ∆u + uv,

∂v

∂t
= D∆v − uv.
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In this work we will study the dependence of the front
velocity on the imposition of a cutoff around a stable
state in a two-component reaction-diffusion system with a
bistable kinetics or reaction term. This kind of model has
been used to simulate the patterns formation of bacterial
colonies [8]. We will perform time-dependent numerical
simulations to show how uniformly translating front solu-
tions appear from initial conditions with compact support.
In order to be able to construct the front solutions semi-
analytically, we take the reaction terms piecewise linear.
This approach is well known in studies of excitable me-
dia [9]. The introduction of the cutoff in the model is rep-
resented by equations with reaction functions multiplied
by the Heaviside step-function θ(u−ε), where ε = const is
the threshold density for growth (cutoff size) [8]. Thus, the
system being considered consists of two scalar fields, an
activator u(x, t) and an inhibitor v(x, t), and is described
by the equations

∂u(x, t)
∂t

= f(u, v)θ(u − ε) +
∂2u(x, t)

∂x2
,

∂v(x, t)
∂t

= ηg(u, v)θ(u − ε) +
∂2v(x, t)

∂x2
(1)

with reaction terms f(u, v) = −u + θ(u − a) − v and
g(u, v) = u − v. Here θ(u) is the Heaviside function; η is
the time scale ratio and a is the position of the discontinu-
ity in f(u, v). This is one of the simplest one-dimensional
bistable reaction-diffusion systems involving one activator
and one inhibitor. This model was originally presented
(with nondiffusing inhibitor v(x, t) and without cutoff) as
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a mathematical description of the excitation and propa-
gation of nerve impulses [10]. In equation (1) we have con-
sidered that both activator and inhibitor have the same
diffusion coefficient. This assumption simplifies our calcu-
lations and is also common for activator-inhibitor systems
described by the Belousov-Zhabotinsky reaction [11].

Introducing the traveling frame coordinate ξ = x− ct,
where c is the wave speed, we obtain two ordinary differ-
ential equations. There are two front solutions in the two-
component reaction-diffusion systems [12]. For the sym-
metric case a stationary front bifurcates to a pair of fronts
propagating in opposite directions, i.e., with positive and
negative velocities. For the sake of definiteness, we shall
consider front solutions traveling from u = v = 1/2 when
ξ → −∞ to u = v = 0 when ξ → +∞. In this case the
velocity of fronts is positive and the wave profiles read1

u1(ξ) = A11eλ1ξ + A12eλ2ξ + 1/2,

u2(ξ) = A21eλ1ξ + A22eλ2ξ + A23eλ3ξ + A24eλ4ξ,

u3(ξ) = A0e−cξ,

v1(ξ) = B11eλ1ξ + B12eλ2ξ + 1/2,

v2(ξ) = B21eλ1ξ + B22eλ2ξ + B23eλ3ξ + B24eλ4ξ,

v3(ξ) = B0e−cξ, (2)

where

λ1,2 = −c/2 +
√

c2/4 + (η + 1)/2 ±
√

(η + 1)2/4 − 2η,

λ3,4 = −c/2 −
√

c2/4 + (η + 1)/2 ±
√

(η + 1)2/4 − 2η

(3)

and

Bm1,3 = [(η − 1)/2 +
√

(η − 1)2/4 − η]Am1,3,

Bm2,4 = [(η − 1)/2 −
√

(η − 1)2/4 − η]

× Am2,4, m = 1, 2. (4)

Thus, the first terms u1, v1 contain exponentials growing
with increasing ξ, whereas the third terms u3, v3 contain
exponentials decaying with growing ξ at positive veloci-
ties. All three terms for u and v are patched together using
matching conditions for functions and their derivatives:

1 Ito and Ohta [13] obtained exact solutions for a motionless
case and a propagating-pulse solution in the large inhibitor dif-
fusion coefficient approximation. We consider here the system
with equal diffusion constants. In this situation all solutions
are exact.

– patching at the first point u(ξ = ξ0) = a:

2∑
n=1

A1neλnξ0 + 1/2 =
4∑

n=1

A2neλnξ0 ,

2∑
n=1

A1nλneλnξ0 =
4∑

n=1

A2nλneλnξ0 ,

2∑
n=1

A1neλnξ0 + 1/2 = a,

2∑
n=1

B1neλnξ0 + 1/2 =
4∑

n=1

B2neλnξ0 ,

2∑
n=1

B1nλneλnξ0 =
4∑

n=1

B2nλneλnξ0 ; (5a)

– patching at the second point u(ξ = ξ∗0) = ε:

4∑
n=1

A2neλnξ∗
0 = A0e

−cξ∗
0 ,

4∑
n=1

A2nλneλnξ∗
0 = −cA0e

−cξ∗
0 ,

A0e
−cξ∗

0 = ε,

4∑
n=1

B2neλnξ∗
0 = B0e

−cξ∗
0 ,

4∑
n=1

B2nλneλnξ∗
0 = −cB0e

−cξ∗
0 . (5b)

We solve this system numerically (for ξ0 = 0) and obtain
the speed as a function of the model parameters ε and a
for fixed η. 2 The graphical representations of the speed
versus a and ε are illustrated in Figures 1 and 2. The first
diagram (Fig. 1) displays front speed curves, c versus ε,
for different values of a and η = 0.1. For each value of ε
we have two possible front solutions with different speeds:
the upper and lower branches correspond to fast and slow
fronts respectively. One expects, as in the case of systems
without cutoffs [14], that the faster front corresponds to a
stable wave while the slower front corresponds to an un-
stable wave. There are two critical values, acrit and εcrit,
which are connected to each other. So, εcrit appears when
a > acrit and acrit is between 0.27 and 0.28 for η = 0.1.
Fronts propagate with positive velocities for ε > εcrit, i.e.,
there appears a limited interval of ε where fronts with a
positive speed do not exist. Figure 1 also shows that the
curves for fronts with a > acrit lie “inside” those fronts
with a < acrit. Notice that for a = 0.28 the speed is not
defined for all values of the cutoff threshold ε. Another in-
teresting result is that the speed increases with ε for fast
fronts, as occurs when a cutoff is imposed around the un-
stable state in a pushed front, and decreases with ε for a
slow front, as occurs when a cutoff is imposed around the

2 This parameter is fixed thorough the paper.
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Fig. 1. Speed versus cutoff threshold for η = 0.1. The conver-
gence of two front solutions. This is cutoff-dependent version
of the nonequilibrium Ising-Bloch bifurcation [15].

Fig. 2. Speed versus discontinuity position for η = 0.1. The
shift of the front speed due to the cutoff is shown.

unstable state in pulled fronts. At ε = εcrit, both branches
join each other. The occurrence of such a convergence sce-
nario can be explained by a nonequilibrium Ising-Bloch
bifurcation [15] in the asymmetric case. A plot of the so-
lutions, c = c(η), in the (c, η) plane yields the saddle-node
bifurcation diagram. The third branch of the bifurcation
diagram occurs for negative speed values. We refer to the
faster front as a Bloch front and to the slower front as an
Ising front. This front bifurcation indicates where, in pa-
rameter space (ε, a), we should expect an initial pattern
of domains decaying toward a uniform state and where it
develops into a stable traveling wave. We will demonstrate
below numerically this qualitative behavior.

In Figure 2 we plot front speed curves, c versus a, for
different values of ε and η = 0.1. Each curve has a well
defined knee. The knees indicate the existence of neutrally
stable fronts out of which bifurcate the stable and unsta-
ble fronts [14]. We observe that the minimum value of c
on each speed curve tends to zero for specific values of
a depending on ε. Although it has not been displayed in
Figure 2 the curves cross the horizontal axis toward neg-
ative values of the speed. In the opposite extreme, when
a → 0 the speed grows without limit.

We have also performed numerical calculations to
determine further properties of fronts for equation (1).

Fig. 3. Formation of a front from step initial condition. Spatial
profiles (a) u(x, t) versus x , (b) v(x, t) versus x and (c) the u−v
diagram are shown for discrete t: tm = 2000m, 0 ≤ m ≤ 11.
The other parameters are fixed at ε = η = 0.1 and a = 0.25.
For (a)–(c) we use the piecewise linear function f(u, v) = −u−
θ(u−a)−v and for (d) we use the cubic nonlinearity f(u, v) =
5u−1−(4u−1)3−v. In the last case the u−v diagram is shown
for tm = 2000m, 0 ≤ m ≤ 7. The dashed lines show null-clines,
f(u, v) = 0 (piecewise linear) and g(u, v) = 0, the thin solid
line displays the cubic nonlinear function, f(u, v) = 0.

In all of the numerical results illustrated here we took
ε = η = 0.1. For numerical integration, we employed a
simple finite-difference scheme with ∆x = 0.1, 1 < x ≤
300, ∆t = 0.001, and a zero-flux condition, ∂u/∂x = 0
and ∂v/∂x = 0, at both boundaries. To study how pat-
terns are affected by the front bifurcation, we begin with a
single step initial condition. The fronts emerging from step
initial conditions are illustrated in Figures 3 and 4. Spatial
profiles u(x, t), v(x, t) and u − v diagrams are shown for
discrete t taking the maximum time to be tm = 2000m.
In Figure 3 we take ε = η = 0.1 and a = 0.25 while for
Figure 4 we take ε = η = 0.1 and a = 0.3. It can be
clearly seen from u − v diagrams (Figs. 3c and 4c), that
the u − v curves asymptotically tend to uniformly trans-
lating solutions. Our numerical calculations demonstrate
that if the parameters a, η or ε lie in a certain subset of
values for which the analytical speed is not defined (see,
for example, Figure 2 with ε = η = 0.1 and a > 0.29)
then it is possible to find a front traveling with negative
speed: Figure 3a shows a front moving to the right, i.e.,
propagating with positive velocity, whereas Figure 4a il-
lustrates a front moving to the left (negative speed). The
question we address here is how front solutions connect-
ing the two states differ from those found for ε = 0. In
the case without cutoff, if the system is prepared in the
state 1/2 and perturbed locally on the left edge, then a
front will propagate to the right, c > 0. On the other
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Fig. 4. Formation of a front from step initial condition. Spatial
profiles (a) u(x, t) versus x, (b) v(x, t) versus x and (c) the u−v
diagram are shown for discrete t: tm = 2000m, 0 ≤ m ≤ 7. The
other parameters are fixed at ε = η = 0.1 and a = 0.3. For
(a)–(c) we use the piecewise linear function f(u, v) = −u −
θ(u−a)−v and for (d) we use the cubic nonlinearity f(u, v) =
5u−1−(4u−1)3−v. In the last case the u−v diagram is shown
for tm = 2000m, 0 ≤ m ≤ 4. The dashed lines show null-clines,
f(u, v) = 0 (piecewise linear) and g(u, v) = 0, the thin solid
line displays the cubic nonlinear function, f(u, v) = 0.

hand, preparing the system in the state 0 and perturb-
ing it locally at the right edge of the domain, then the
front propagates to the left, c < 0 [16]. In our prelim-
inary calculations (not shown here) for ε �= 0, we have
prepared the system in a symmetrically perturbed state,
u(x, 0) = v(x, 0) = 0.5θ(x − xmax/2) and observed how
fronts travel. We have found that emerging fronts prop-
agate in opposite directions when the discontinuity pa-
rameter a changes from a = 0.2 to a = 0.3, which is in
agreement with Figure 2. After that, we have perturbed
the system at the edge lying in the opposite propagation
direction as Figures 3 and 4 demonstrate.

Notice that the cutoff does not alter the qualitative
form of the front with positive velocity, however, the
front with negative speed returns slowly to the state at
u = v = 0 in the cutoff region, so that the cutoff zone
transforms the front profile (Figs. 4). Typical traveling
wave solutions for the system (1) without cutoff, pass
through the region in u with negative values. The same
holds for the traveling pulse, or solitary wave, solutions for
the excitable system. In this case the trailing edge of the
pulse (the wave pulse back) also reaches negative values
of u. In the system with cutoff considered here we see that
both fronts (with positive and negative velocities) travel
only in the region of the positive values of u, i.e., the ef-
fect of the cutoff is to shift the wave profiles to the positive
value interval for both u and v.

Fig. 5. Collision of two fronts. Spatial profiles (a) u(x, t)
versus x and (b) v(x, t) versus x are shown for discrete t:
tm = 2000m, 0 ≤ m ≤ 11. The other parameters are fixed
at ε = η = 0.1 and a = 0.25.

Finally, we have briefly considered here another type
of nonlinearity, the functions of the cubic type f(u, v) ∝
u − u3 − v, to provide some evidence of the generality
of the phenomenon and to compare with the results ob-
tained above for their piecewise linear approximations.
Figures 3d and 4d show the u − v diagrams for the sym-
metric (a = 0.25) and asymmetric (a = 0.3) cases, re-
spectively. We see that the dynamical behaviors are in an
agreement with those displayed in Figures 3c and 4c. The
only difference is in tn: the u − v diagrams in Figures 3d
and 4d are shown for m = 0, 1, 2, ..., 7 and m = 0, 1, 2, ..., 4,
respectively, because at these times both fronts are com-
pletely formed. Thus, according to the above simulations,
we strongly emphasize that the appearance of a front with
negative velocity is not limited to the piecewise linear
reaction-diffusion system in the form of equation (1) but
it presents more general bistable kinetics.

For the same parameter values, however, there exist
simultaneously the rightward and leftward moving fronts
or, more precisely, the front and back. This situation can
be realized under an appropriate choice of the initial con-
ditions. In Figures 5 and 6 we take for initial data at
t = t0 two square steps. The other parameters are fixed at
ε = η = 0.1, a = 0.25 and a = 0.3, as above in Figures 3
and 4, respectively. Then the numerical simulations show
the dynamics of the collisions of the front and the back.
When these two waves reach each other they annihilate
and, in this case, the medium returns ultimately to the
stable state (u = v = 1/2 in Figs. 5 and u = v = 0
in Figs. 6. Note that u = v = 0 and u = v = 1/2 are
metastable states in Figs. 5 and 6 respectively due to the
different value of a taken in each figures). The relaxation
phenomena towards a stable state for ε = 0 is consid-
ered in reference [16], where a transition from transient to
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Fig. 6. Collision of two fronts. Spatial profiles (a) u(x, t) versus
x and (b) v(x, t) versus x are shown for discrete t: tm = 2000m,
m = 0, 1, 2, 3, 12 (a) and 0 ≤ m ≤ 12 (b). The other parameters
are fixed at ε = η = 0.1 and a = 0.3.

persistent patterns is explored. The propagating domains
do not necessarily annihilate in a head-on collision but can
behave as if they are elastic objects. In this context, the
dynamics are usually taken to be excitable and in this case
there is only one stable singular point, the state u = v = 0.
An adequate initial displacement from the stable leads to
a large path before the return. This is a formation of an
another type of traveling wave, a pulse. This significant
change in the qualitative behavior of patterns can be at-
tributed to two related factors; the appearance of front
multiplicity due to the nonequilibrium Ising-Bloch bifur-
cation and the appearance of a second independent field.

Initial conditions play a critical role in the existence of
traveling waves [1]. If the perturbation has a maximum u
lower than the threshold u = a then the kinetics cause
u to return to the origin and the spatial perturbation
simply dies out. On the other hand if the perturbation
is larger than the threshold u = a then the kinetics ini-
tiate a large domain in both u and v. The influence of
initial disturbances on propagating fronts can be shown
when a random initial condition is considered. Figure 7
shows a 3D-diagram for complex wave dynamics starting
from random initial sets for u(x, t) and v(x, t) at t0 = 0
on intervals for u and v from 0 to 0.6. One can see that
the disturbed region forms different domains of the front,
back and pulse-like shapes. As the disturbed region slowly
returns to the stable state, the metastable state either
shrinks or expands (the pulse-like wave collapses) and the
front and back domains become widely separated from
each other, so that at t = 25 000 only a single front exists.

Fig. 7. 3D-diagrams: (a) u(x, t) versus x and t (b) and v(x, t)
versus x and t starting from a random initial condition at t0 =
0 on the interval u, v ∈ [0, 0.6]. The other parameters are fixed
at ε = 0.001, η = 0.1 and a = 0.25.

Conclusions

Using a combination of semi-analytical analysis and nu-
merical simulation, we have shown that when the two-
component piecewise linear bistable reaction-diffusion sys-
tem is solved on a finite domain subject to zero flux bound-
ary conditions, uniformly traveling waves with different
speeds develop. We have shown the formation of traveling
fronts from step initial conditions, the collision of fronts
from two-step initial conditions and the existence of other
types of waves under random initial conditions. The nu-
merical study demonstrates that there are fronts propa-
gating with negative velocity if ε < εcrit constituting the
cutoff-version of the nonequilibrium Ising-Bloch bifurca-
tion. The speed of the Bloch front increases with ε while
the speed of the Ising front decreases with ε.
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